Inducible HSP70 Is Critical in Preventing the Aggregation and Enhancing the Processing of PMP22
نویسندگان
چکیده
Chaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cytosolic aggregates of PMP22, linked with a demyelinating Schwann cell phenotype, result in suppression of proteasome activity and activation of proteostatic mechanisms, including the heat shock pathway. Although the beneficial effects of chaperones in preventing the aggregation and improving the trafficking of PMP22 have been repeatedly observed, the requirement for HSP70 in events remains elusive. In this study, we show that activation of the chaperone pathway in fibroblasts from PMP22 duplication-associated Charcot-Marie-Tooth disease type 1A patient with an FDA-approved small molecule increases HSP70 expression and attenuates proteasome dysfunction. Using cells from an HSP70.1/3(-/-) (inducible HSP70) mouse model, we demonstrate that under proteotoxic stress, this chaperone is critical in preventing the aggregation of PMP22, and this effect is aided by macroautophagy. When examined at steady-state, HSP70 appears to play a minor role in the trafficking of wild-type-PMP22, while it is crucial for preventing the buildup of the aggregation-prone Trembler-J-PMP22. HSP70 aids the processing of Trembler-J-PMP22 through the Golgi and its delivery to lysosomes via Rab7-positive vesicles. Together, these results demonstrate a key role for inducible HSP70 in aiding the processing and hindering the accumulation of misfolded PMP22, which in turn alleviates proteotoxicity within the cells.
منابع مشابه
P-31: Dexamethasone and Vitamin E Up-Regulated The Varicocele-Reduced Hsp70 Protein Expression; Correlation with Testicular Tissue Inflammation and Antioxidant Status
Background: The varicocele (VCL) impacts the testicular tissue both by enhancing tissue inflammation and by down-regulating the antioxidant status. On the other hand, in varicocele patient the critical role of Hsp70 in spermiogenesis is identified. Therefore present study was estimated to evaluate the protective effect of testosterone and vitamin E on VCL-decreased Hsp70 expression and on VCL-i...
متن کاملOptimizing refolding condition for recombinant tissue plasminogen activator
Low molecular size additives such as L-arginine and the redox compounds have been used both in the culturemedium and in vitro refolding to increase recombinant proteins production. Additives increase proteinrefolding and yield of active proteins by suppressing aggregate formation or enhancing refolding process.In this work, a comparative study was performed on refolding of rec...
متن کاملThe Effect of Hoffmeister Salts on the Chaperoning Action of β-Casein in Preventing Aggregation of Reduced β-Lactalbumin
Protein aggregation and precipitation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis. β-Casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity to protect protein form aggregation. Hofmeister salts (lyotropice series) are a class of ions which have an effect on the solubility and also the stab...
متن کاملSynthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment
The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...
متن کاملSynthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment
The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015